
International	Journal	of	Social	Science	and	Education	Research																																																														Volume	7	Issue	6,	2024	

ISSN:	2637‐6067																																																																																																																										DOI:	10.6918/IJOSSER.202406_7(6).0008	

53

Teaching	Design	of	"Architecture	Design"	Based	on	Case	Teaching	
Yadong Gong1, a

1School of Computer Science and Software, Zhaoqing University, Zhaoqing 526061, P.R.China
a371126472@qq.com

Abstract	
Based	on	the	existing	problems	in	the	traditional	teaching	procedure	of	"Introduction	to	
Software	Engineering"	course,	we	take	the	"architecture	design"	section	as	an	example,	
and	 adopt	 the	 case	 teaching	 method	 to	 enhance	 student	 learning.	 In	 the	 teaching	
procedure,	 the	attention	of	 students	 is	attracted	by	 the	case	discussion	or	questions.	
Then,	 further	 thinking	 is	 triggered	by	group‐based	activities.	 In	 the	end,	The	 teacher	
conclude	 the	 results	of	 the	 case	discussion	or	 the	questions.	Based	on	 the	 results	of	
teaching	practice,	the	teaching	goal,	such	as	the	ability	to	learn	and	apply	knowledge,	has	
been	achieved.	

Keywords		

Introduction	to	Software	Engineering,	architecture	design,	case	teaching.		

1. Introduction	

In the current educational context, students cultivated by universities need to possess the
following abilities: a certain level of engineering practice capability and innovative practice
capability. This requires students not only to acquire the corresponding knowledge and skills
in daily teaching activities but also to develop higher-level abilities such as problem
identification and resolution, a certain level of innovation capability, teamwork ability, and
analytical practice skills[1,2].
"Introduction to Software Engineering" is a core course for the Software Engineering major,
which helps students understand the processes, job responsibilities and positions in each
process of software development. It is an important supporting course for computer science
students to determine their career planning. Due to the strong theoretical nature, scattered
knowledge points, and weak practicality of the software engineering course, the curriculum
reform of software engineering is imminent. Without changing the theoretical nature of this
course, it is necessary to organically integrate practical content[3].
Through the investigation of the teaching methods of "Introduction to Software Engineering"
courses in domestic universities, the following two aspects of deficiencies in teaching methods
were found[4,5]:
Theoretical knowledge is detached from actual enterprise practices. The "Software
Engineering" course is positioned as a theoretical course in most universities. However,
essentially, the "Software Engineering" course is one that extracts theories from practice;
theory comes from practice, and practice supports theory. The textbooks used by most
domestic university teachers for the "Software Engineering" course are classic, with a solid
knowledge framework and good reference value. However, some young teachers, due to their
lack of work experience in enterprises, tend to teach by rote in the teaching process, focusing
only on the teaching of theoretical knowledge and lacking specific practical projects to support
the theoretical knowledge. As a result, students have a superficial understanding of the related
knowledge of software engineering, and the guidance for students to engage in related fields
after graduation is insufficient.

International	Journal	of	Social	Science	and	Education	Research																																																														Volume	7	Issue	6,	2024	

ISSN:	2637‐6067																																																																																																																										DOI:	10.6918/IJOSSER.202406_7(6).0008	

54

The subjectivity of students is not reflected. The teaching method of the "Software Engineering"
course mainly adopts the PPT lecture method. Teachers impart knowledge according to the
course outline and textbooks, and students participate in teaching activities following the
teacher's pace. This shows that students passively receive knowledge, with little teacher-
student interaction in the classroom, and the subjectivity of students is not brought into play.
Students learn according to the teacher's wishes without a clear goal, and their motivation to
learn is not strong. Moreover, since the software engineering course does not have a
corresponding practical course and mainly follows a teaching method focused on theoretical
teaching, it lacks matching practical courses. This fails to reflect students' creativity, cannot test
the degree of students' learning, and cannot stimulate students' motivation to learn, which can
easily lead to a situation where students have good exam results but poor application ability.
Such teaching outcomes are contrary to the teaching objectives.
In order to enhance students' interest in the course and improve their abilities to learn and
apply knowledge, we have adopted a case-based teaching approach. In this paper, we take the
"architecture design" section as an example to demonstrate the teaching design of the course.

2. Teaching	Goals	

Teaching objectives include the following four aspects:
To understand the tasks of architecture design;
To master the process of architecture design;
To grasp the design principles and heuristic rules of architecture design;
To master the data-flow oriented design methods.

3. Teaching	Strategies	

This is a theoretical course on software architecture design, covering five aspects: the
architecture design process, design principles, heuristic rules, graphical tools for describing
software structure, and data-flow oriented design methods. To stimulate students' interest in
learning and facilitate their understanding and application of knowledge, we plan to adopt the
following teaching methods:
Before introducing the content of software architecture design, we first introduce architecture
design through the various stages of a software development case implementation, along with
the main tasks of that phase. Then, based on the requirements of the case project, we ask
students to attempt designs and analyze the impact of different design outcomes on software
quality and maintainability, thereby highlighting the significance of learning in this chapter. At
the same time, by utilizing these cases, we discuss the practical importance of software
designers to help students improve their professional skills actively.
We use the lecture method to help students understand the concepts involved in design
principles, including abstraction, gradual refinement, information hiding, module
independence, coupling and cohesion, and then, demonstrate the application of these concepts
with examples.
We use a poorly designed software structure as an introduction, guiding students through
discussion to spark their interest in learning about software structure design. We also explain
each heuristic rule in architecture design with examples, ensuring students have a correct and
clear understanding of the content of heuristic rules.
We first introduce graphical tools for describing software structure and then, based on specific
examples, explain the steps and methods for mapping software data flow diagrams to the
software structure, enabling students to understand and apply this knowledge.

International	Journal	of	Social	Science	and	Education	Research																																																														Volume	7	Issue	6,	2024	

ISSN:	2637‐6067																																																																																																																										DOI:	10.6918/IJOSSER.202406_7(6).0008	

55

We set up a comprehensive application segment. We ask students to use the knowledge and
methods learned in this chapter to design a corresponding software structure for a brief
software requirements specification and to present its structure diagram using graphical tools,
thereby mastering the method of architecture design.

4. Teaching	Procedure	Design	

Step 1:
 Teaching goal: Understanding the Significance and Tasks of Architecture Design;
 Teacher Activity:
 Introduce the various stages of a sample software development project to lead into the

architecture design phase;
 Explain the two main tasks of the architecture design phase: determining the general

solution for the software and designing the software structure;
 Illustrate the significance of the architecture design content by discussing the impact

of different design outcomes on software quality and maintainability.
Step 2:
 Teaching Goal: Mastering the Design Principles in the Architecture Design Process;
 Teacher Activity
 Interpret each rule of the design principles;
 Use examples to explain the specific application of design principles;
 Pose some architecture design problems for students to solve, to test their

understanding of the knowledge points.
Step 3:
 Teaching Goal: Mastering the Heuristic Rules in the Architecture Design Process;
 Teacher Activity:
 Provide a poorly designed software structure for students to discuss;
 Introduce the concept of heuristic rules in architecture design based on the discussion

results;
 Explain the meaning of each heuristic rule with examples.

Step 4:
 Teaching Goal: Mastering the Data-Flow Oriented Software Design Method;
 Teacher Activity:
 Introduce graphical tools for describing software structure diagrams;
 Explain the two types of data flow diagrams: transformation flow and transaction flow;
 Introduce the basic methods for mapping data flow diagrams to software structure

diagrams;
 Demonstrate the method and steps for mapping transformation flow to software

structure diagrams with examples;
 Require students to work in groups to map a transaction flow example to a software

structure diagram, and then, review the design results.
Step 5:
 Teaching Goal: Mastering the Comprehensive Application of Knowledge;
 Teacher Activity:
 Summarize all the knowledge points involved in architecture design;
 Require students to work in groups to complete the architecture design of a case project;

International	Journal	of	Social	Science	and	Education	Research																																																														Volume	7	Issue	6,	2024	

ISSN:	2637‐6067																																																																																																																										DOI:	10.6918/IJOSSER.202406_7(6).0008	

56

 Give comments on the project results completed by the students.

5. Conclusion	

This paper firstly introduces a case teaching method based on the existing problems in the
teaching process of the course " Introduction to Software Engineering ". Then, we present the
teaching objectives, teaching strategies and teaching process design of the above course by
taking the "architecture design" section as an example. After the teaching practice in the class,
it has been demonstrated that our teaching model can enhance the students’ interest in learning
new knowledge, and also greatly improve their abilities to learn and apply new knowledge.

Acknowledgements	

This work was supported by the 2023 Educational Teaching Research and Reform Project of
the Online Open Course Consortium of Universities in the Guangdong-Hong Kong-Macao
Greater Bay Area under Grant WGKM2023162.

References	

[1] Tong Yujun, Yi Huawei, Chen Xin, et al. Research and Practice of Ideological and Political Education
in "Software Engineering" Course [J]. Journal of Liaoning University of Technology (Social Science
Edition), 2024, 26(01): 112-114.

[2] Shen Liwei, Peng Xin. Exploration of Software Engineering Teaching Method Centered on Practical
Ability [J]. Software Guide, 2023, 22(12): 1-6.

[3] Jiang Ying, Wang Hongbin, Ding Jiaman, et al. Exploration of Software Engineering Course Teaching
to Promote Ability Enhancement with Practice Orientation [J]. Software Guide, 2023, 22(12): 25-29.

[4] Xiao Bo. Exploration of Software Engineering Course Teaching Based on CDIO and Task-driven [J].
Computer Era, 2023(12): 209-212.

[5] Mao Xinjun, Sun Yanchun, Chu Hua, et al. The Construction Philosophy and Achievements of "101
Plan" Software Engineering Course [J]. Computer Education, 2023(11): 29-33.

