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Abstract	
Variable	selection	is	to	use	statistical	methods	to	select	the	most	suitable	subset	from	a	
large	number	of	variables	 to	explain	 the	model	and	predict.	 Identifying	and	selecting	
appropriate	variables	 is	more	 important	 in	model	prediction.	Based	on	Kaplan‐Meier	
(KM)	estimation	and	accelerated	failure	time	(AFT)	model,	this	paper	explores	whether	
‘age	at	surgery’and	‘medication’	have	an	impact	on	the	postoperative	survival	of	breast	
cancer	patients,	and	then	discusses	the	impact	of	variable	selection	on	actual	problems.	
The	analysis	found	that	the	effect	of	actual	age	on	survival	time	needs	to	be	considered,	
so	 time‐dependent	covariates	are	used	 for	 improvement.	On	 the	basis	of	 the	existing	
covariates,	 a	 variable	 is	 added	 to	 represent	 the	 actual	 age	 as	 the	 time‐dependent	
covariate	of	the	model.	The	results	show	that	the	time‐dependent	covariates	make	up	for	
the	 deficiencies	 in	 some	 aspects,	 making	 the	 analysis	 more	 comprehensive	 and	
reasonable.	
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1. Introduction	

Survival analysis models widely appear in the fields of medicine, biology, insurance and other 
scientific fields, and mainly study the relationship between the time of event occurrence and 
certain events. This type of model has two characteristics: one is with censored data, that is, 
because some observed individuals drop out or cannot be tracked, the survival time of some 
individuals cannot be observed, so there are censored data. The second is high-dimensional 
data. Due to the large amount of data generated in bioinformatics, medicine and other fields 
and the rapid development of computer technology, there is inevitably a large amount of 
survival data in this part of the field. For individuals, the factors that affect lifespan time There 
are also a large number of latent variables. For example, in the colon cancer study [1], in order 
to compare the effect of adjuvant drug levamisole treatment with levamisole and fluorouracil 
mixed treatment after colon cancer resection, the time of cancer recurrence was different for 
each patient according to the physical condition of each patient. Various physical indicators 
such as height, weight, medical history, and blood type may be relevant explanatory variables. 
Variable selection is the use of statistical methods to select the most appropriate subset of 
variables to explain the model and predict. It has three main functions: one is to eliminate the 
relevant and redundant variables in the model. The existence of these variables cannot improve 
the accuracy of the model, so it is necessary to do relevant processing; Thereby, the accuracy of 
the model is improved [2]; the third is to reduce the dimension of the model and the 
unnecessary calculation amount. With the increase of the sample size and dimension, the 
calculation amount of the model, especially the nonlinear model will increase exponentially, 
and the variable selection will greatly reduce the computational cost.  
To analyze survival data, statisticians prefer to choose Cox proportional hazards regression 
models or accelerated failure time models, which are considered the most popular models in 
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survival analysis. The accelerated failure time model assumes that the failure time has a linear 
relationship with the covariates after logarithmic transformation, because its model structure 
and interpretation of regression parameters are similar to general linear regression equations 
[3]. Compared with the Cox proportional hazards regression model, the interpretation of the 
results is also simpler, more intuitive, and easier to accept. Because of the advantages of the 
accelerated failure time model, many statisticians and scholars have done a lot of research on 
the estimation of unknown parameters in the model, the prediction of the model and the 
applicable conditions. So far, scholars have done a lot of research on accelerated failure time 
models under censored data, including right-censoring and interval-censoring, and they have 
also achieved fruitful academic results. 
The accelerated failure time model can relate the logarithmic form of the failure time and the 
covariates in the form of a linear relationship. Compared with the Cox model and the additive 
hazard model, the representation is simpler and more straightforward. When the covariate 
increases or decreases, the failure time T speeds up or slows down. Regarding the accelerated 
failure time model, many scholars have given relevant research. Such as: Pan (2001), Lambert 
et al. (2004) and so on. Pan (2001) gave Frialty's method to describe the possible correlation 
and difference of failure time for multivariate failure time in the study of accelerated failure 
time model, and used the similar algorithm of EM to estimate the parameters of Frailty model. 
However, the authors did not study the relationship between observation time and failure time. 
Lambert et al. (2004) used an accelerated time-to-failure model to study 31 kidney transplant 
patients in the United Kingdom and identify prognostic factors. The model can combine 
different explanatory variables and random effects into one, and the model has a good result 
for transplanted data. 
Based on Kaplan-Meier (KM) estimation and accelerated failure time (AFT) model, this paper 
proposes variable selection, which is verified with actual data, and then discusses the impact of 
variable selection on practical problems. 

2. Methodology	

2.1. Kaplan‐Meier	Estimation	
Assuming that in a group of observation objects, by the end of the observation, a total of m 
individuals died at	j time points (or any other outcome event under study, hereinafter, death is 
used as an example), and the order of death time points is:    0≤ t(1)	≤ t(2)	…≤ t(j)	≤ ∞ . There is 
a n=n0 sample from the survival function S to be estimated. It is assumed that just before a 
certain death time  t(j), there are still rj  observation objects that are at risk of death (meaning 
that they are still alive and have not been censored), and  dj death occurs at the time t(j), Based 
on this, the survival function value at time t can be estimated as: 

 

                                                    S෠ሺtሻ= ∏ ൬1-
dj

rj
൰j: tj ≤ t                                                                      (1) 

 
This value is also called the K-M estimator. It is not difficult to see that the K-M estimate should 
be a discrete function in the time dimension by definition. If it is assumed that all death events 
occur exactly at the time of death, and no death occurs between two discrete death time points, 
the survival curve can be drawn as a continuous, gradually decreasing step function according 
to the KM estimate, Only changes the value at the point of death. For discrete time points, it can 
be shown that the K-M estimate is actually the maximum likelihood estimate [4]. 
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The K-M estimate can be shown to follow an approximately normal distribution [5], so its 
confidence interval can be calculated. Greenwood proposed an approximate formula for 
calculating its confidence interval (Greenwood's formula): 
 

                                           V෡ ቀS෠ሺtሻቁ ≈ൣS෠ሺtሻ൧
2

∑
dj

rj൫rj-dj൯
j:tj ≤ t                                                            (2) 

 
This formula can also be used to calculate percentile survival time confidence intervals. 

2.2. Accelerated	Failure	Time	Model	
Let T be the time to failure and X be the corresponding covariates. Without censoring 
observations, we can directly study the regression equation of T with respect to X : 

Ti=μ+xiβ+εi        i=1, 2, …, n 
where μ is the constant term, εi  is the error term, and βis the regression coefficient of the 
covariate. 
However, censored values are often present, and it was later found that if a log-transformation 
of survival time T is used as the dependent variable, it can be used to analyze cases with 
censored data. Let be the survival time without covariates, its hazard function form is: 
 

 h0ሺtሻ= f0ሺtሻ

1-F0ሺtሻ
                                                                     (3) 

 

Now assume that with covariate X, the individual survival time T=exTβT0 , in this relationship, if 
xTβ<0, then T is smaller than T0, that is, the covariate accelerates the individual’s failure process. 
The hazard function has the form 
 

hሺtሻ= f(t)

1-F(t)
= f0(e-xTβt)e-xTβ

1-F0(e-xTβt)
=h0(e-xTβt)e-xTβ=ϕh0ሺϕtሻ                                              (4) 

 

ϕ is called the acceleration factor. Apply a logarithmic transformation to both sides, 
 

 logሺTሻ =xTβ+ log T0 =xTβ+ε                                                                  (5) 
 
The above formula is the accelerated failure time model. 
The model structure of the accelerated failure time model and the interpretation of the 
regression coefficients are similar to the general linear regression equation, and the analysis 
results are easy to understand, and the error term does not specify a specific distribution form, 
which shows its practicability and flexibility. 
When applying the parametric method, people usually express the AFT model as: 
 

Yi= log Ti= μ+xTβ+σεi                                                                      (6) 
 
where β is the regression coefficient vector and ε is the random error. In practice, it has been 
found that there are four models that can be attributed to the AFT model family, namely Weibull 
regression model, logarithmic logistic regression model, logarithmic normal distribution 
regression model and generalized Gamma distribution regression model. 
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Taking the Weibull regression model as an example, when the error term of the accelerated 
failure time model is assumed to obey the Weibull distribution, the probability density function 
of εi=( log Ti= μ+xTβ)/σ is: 

fεሺεiሻ=expሼεi-exp(εi)ሽ 
the probability density function of Yi= log Ti= μ+xTβ+σεi is: 

1
σ

fε ቆ
log x- μ-xTβ

σ
ቇ 

Then, the probability density function of the survival time of the i-th observation object is: 

fiሺyሻ=
1
σ

 exp(ui-eui) 

where ui=
y-μ-xTβ

σ
 

The likelihood function of the log survival function based on n observation units is: 

Lሺβ,μ,σሻ= ෑ {fi൫yi൯}
δi

n

i=1

{Si൫yi൯}
1-δi 

𝑓௜ and 𝑆௜ are the probability density function and survival function of the i-th object at log( ti), 
respectively, 
δi indicates the survival state, 1 indicates failure, and 0 indicates censoring. 

3. Modelling	

3.1. Survival	Function	Based	on	K‐M	Estimation	
The data in this section are derived from the data set of Reference 7, and the purpose is to 
explore whether ‘age at surgery’ and ‘medication’ have an impact on the survival of breast 
cancer patients after surgery. The data contains 4 variables: time, index, age and group, which 
represent survival time (unit: year), censoring (1 means death, 0 means censoring), age at 
surgery and medication or not (2 means use anticancer drugs, 1 means no anticancer drugs). 
For the given data, we can calculate the survival function through the above formula (2.1), and 
then draw the survival function curve. In order to further compare the differences of survival 
functions more precisely, the confidence interval of each point can be calculated, and the 
confidence interval of the two groups of samples at the same time point can be compared. First, 
the calculated variance of S෠(t) is 
 

V෡Sሺtሻ=Var෢ ൣS෠(t)൧=S෠
2
(t) ෍

dj

nj(n
j
-dj)j:tj≤t

 

 
The 95% confidence interval for S෠(t) is 
 

ൣS෠(t)൧
expൣ±1.96S෠(t)൧

 
 

3.2. Modeling	with	Accelerated	Failure	Time	Model		
As mentioned above, the AFT model of the parametric method includes Weibull , exponential 
distribution, lognormal and logarithmic logistic model according to different distributions. 
Using these four models, the estimated values of the coefficients of the two covariates age and 
group and the log-likelihood of each model were obtained. After the Log-Rank test, the 
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coefficients of the covariates were finally analyzed to obtain their influence on the survival time. 
In addition, the analysis found that the effect of actual age on survival time needs to be 
considered, so time-dependent covariates were used for improvement. On the basis of the 
existing covariates, a variable representing actual age was added as a time-dependent covariate 
of the model. 

4. Numerical	Study	

4.1. Visualized	Survival	Curves	Obtained	by	K‐M	Estimation	
For the treatment variable, plot the survival function curve and confidence region of the two 
groups of samples. 
 

 
Figure	1.	KM curve based on group variable 

 
Figure	2.	KM curve based on group variable, p-value=0.0076. 

 
The above results are obtained by KM estimation. Combined with Figure. 1 and Figure. 2, the 
results show that the survival function curve of group2 is above the survival function curve of 
group1, and the p-value is 0.0076, which is less than 0.05, indicating that under the test level of 
0.05, The KM estimation results are significant, and there are significant differences in the 
survival curves between groups, that is, group has a significant impact on the survival status of 
breast cancer patients. 
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4.2. Variable	Selection	Based	on	AFT	Model	
4.2.1. Covariates	under	Four	AFT	Models	

Table	1.	Covariate coefficients under the weibull distribution 
- Value Std. Error z p 

(Intercept) 5.1354 0.5884 8.73 < 2e-16 
age -0.0668 0.0111 -6.02 1.7e-09 

group 0.4161 0.1330 3.13 0.0018 
Log(scale) -1.1161 0.1346 -8.29 < 2e-16 

 
Table	2.	Covariate coefficients under exponential distribution 

- Value Std. Error z p 
(Intercept) 7.2849 1.2789 5.70 1.2e-08 

age -0.1171 0.0222 -5.28 1.3e-07 
group 1.0024 0.3852 2.60 0.0093 

 
Table	3.	Covariate coefficients under lognormal distribution 

- Value Std. Error z p 
(Intercept) 5.35067 0.45458 11.77 < 2e-16 

age -0.07481 0.00867 -8.63 < 2e-16 
group 0.44346 0.14613 3.03 0.0024 

Log(scale) -0.80364 0.11804 -6.81 9.9e-12 
 

Table	4.	Loglogistic accelerated failure time model 
- Value Std. Error z p 

(Intercept) 5.15640 0.49793 10.37 < 2e-16 
age -0.07167 0.00959 -87.47 7.8e-14 

group 0.46377 0.13993 3.31 0.00092 
Log(scale) -1.39884 0.13533 -10.34 < 2e-16 

 
The coefficients and log-likelihoods of the covariates fitted by the four models are obtained 
through the above, and the results are shown in the following table:  
 

Table	5.	The log-likelihood corresponding to the different models 
AFT Value df p 

Weibull -94.4 2 7.6e-14 
exponential -116.6 2 1.8e-08 
lognormal -95.3 2 3e-15 
loglogistic 94.8 2 1.6e-14 

 
The coefficients obtained for each model were different but with the same sign, with a negative 
coefficient for age and a positive coefficient for treatment.  Changing the speed of time by this 
coefficient, the time axis is stretched when exp(xTβ)>1; when exp(xTβ)<1, the time axis is 
compressed. For the treatment mode, the covariate coefficient is positive, so the acceleration 
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factor ϕ <1 and the acceleration factor of group1 is greater than that of group2, which is 
reflected in the survival function image that the survival function curve of group1 is below the 
survival function curve of group2. 
The P values of the four models are all less than 0.05, indicating that the models are significant 
at the test level of 0.05. The P values corresponding to the covariate coefficients are all less than 
0.05, indicating that if the significance level is 0.05, both age and group have significant effects 
on the survival of breast cancer patients. However, it is not difficult to find that the actual age 
of the patient changes with time. If only the age at the time of surgery is considered and the 
influence of the actual age on the risk rate is ignored, the results will be insufficient. In order to 
make the results more comprehensive, it is necessary to consider the effect of chronological age 
on the risk rate, and to improve the AFT model. On the basis of the existing covariates, a variable 
representing chronological age should be added as a time-dependent covariate of the model. 
4.2.2. Newage	under	Four	AFT	Models	

Table	6.	The log-likelihood corresponding to the different models 
AFT Newage/value Value p 

Weibull -0.0564 -112.4 7.6e-07 
exponential -0.1107 -125.3 1.9e-05 
lognormal -0.0775 -112.7 1.5e-08 
loglogistic -0.0679 -112.7 1.4e-07 

 
Table	7.	Log-Rank test 

 Chisq df p 
age+group 192 48 <2e-16 

Newage 108 26 6e-12 
 
The p-value for chronological age (newage) was less than 0.05, indicating that chronological 
age did have a significant effect on the hazard rate, while the coefficient for chronological age 
(newage) was negative, indicating an acceleration factor. Therefore, in actual analysis, such 
data should not be ignored, but the actual age (newage) should be taken into account while 
considering the influence of age at the time of surgery and the effect of medication use (group) 
on the survival of breast cancer patients. The effect of this time-dependent covariate on survival 
in breast cancer patients. It also shows that the time-dependent covariates make up for the 
deficiencies in some aspects, making the analysis more comprehensive and reasonable. 

5. Conclusion	

By analyzing the difference and relationship between time-dependent covariates and original 
independent covariates, variable selection was studied based on R software. From the analysis 
results, when there are variables that change with time in the data, the time-dependent 
covariate AFT model can make up for the deficiencies in some aspects, making the modeling 
more reasonable and the model analysis more comprehensive.  
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